# Motor Catalogue 

## STEGIA

## Stegia has grown into a multinational group providing

 technically innovative motor solutions. We note with pleasure the appreciation of and the value placed on our investments by the market.Our Head Office in Västerås, Sweden, has been supplemented by a production unit and motor development factory in Shanghai. Through strategic selection of areas, we continue to expand activities in manufacturing, development and cross border sales.

With 25 years' experience and creative engineers situated worldwide, we possess the resources required to handle large customers, large volumes, efficient design solutions and can make dynamic contributions to developing companies. With R\&D in Sweden and production in China we have the best combination of cost, competence and efficiency.

Johan Stjernberg, Chief Executive Officer

## Catalogue Content

Rotary PMRotary PM with GearboxLinear PMSynchronousMotors with Integrated ElectronicsTechnical Pagesp 3-13
p 14-34
p 35-41
p 42-47
p 48-56
p 57-60


## Rotary PM

## STEGIA

## 15S Series

## Key Features

- High torque
- Low noise
- Small size


## General Specifications

| Series | Step <br> angle <br> $\left({ }^{\circ}\right)$ | Voltage <br> $(\mathrm{V})$ | Current <br> $(\mathrm{A})$ | Resistance <br> $(\Omega)$ | Inductance <br> $(\mathrm{mH})$ | Holding <br> torque <br> $(\mathrm{mNm})$ | Detent <br> torque <br> $(\mathrm{mNm})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15S20B1000 | 18 | 12 | 0,4 | 10 | 4,1 | 5,0 | 0,5 |
| 15S20B2000 | 18 | 12 | 0,4 | 20 | 6,7 | 7,8 | 0,6 |
| 15S40B1000 | 9 | 12 | 0,4 | 10 | 5,0 | 4,6 | 0,4 |
| 15S40B2000 | 9 | 12 | 0,4 | 20 | 6,5 | 6,0 | 0,5 |

Optional Features

- Integrated driver
- Gearbox
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft
- Other specifications

Mechanical Dimensions


## Dynamic Torque Curves

15S20B1000
Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step

## 15S20B2000

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## 15S40B2000

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## STEGIA

## $25 T$ Series

## Key Features

- High torque
- Low noise
- Small size


## General Specifications

| Series | Step <br> angle <br> $\left({ }^{\circ}\right)$ | Voltage <br> $(\mathbf{V})$ | Current <br> $(\mathbf{A})$ | Resistance <br> $(\Omega)$ | Inductance <br> $(\mathrm{mH})$ | Holding <br> torque <br> $(\mathrm{mNm})$ | Detent <br> torque <br> $(\mathrm{mNm})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25T24B1500 | $15^{\circ}$ | 24 | 0,4 | 15 | 5,6 | 12 | 2,2 |
| 25T24B2300 | $15^{\circ}$ | 24 | 0,4 | 23 | 6,3 | 13 | 2,2 |
| 24T48B1500 | $7,5^{\circ}$ | 24 | 0,4 | 15 | 8,0 | 21 | 2,7 |
| 25T48B2300 | $7,5^{\circ}$ | 24 | 0,4 | 23 | 8,8 | 22 | 2,7 |
| 25T96B1500 | $3,75^{\circ}$ | 24 | 0,4 | 15 | 10,7 | 17 | 1,8 |
| 25T96B2300 | $3,75^{\circ}$ | 24 | 0,4 | 23 | 10,3 | 20 | 1,8 |

Optional Features

- Integrated driver
- Gearbox
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft
- Other specifications

Mechanical Dimensions


## Dynamic Torque Curves

## 25T24B1500

Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step

## 25T24B2300

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## 25T48B2300

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step

$\longrightarrow$ Pull in torque $\longrightarrow$ Pull out torque

Torque
(mN.m) 22


## Dynamic Torque Curves

25T96B1500
Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step

## 25T96B2300

Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step


## STEGIA

## 25L Series

## Key Features

- High torque
- Low noise
- Small size


## General Specifications

| Series | Step <br> angle <br> $\left({ }^{\circ}\right)$ | Voltage <br> $(\mathrm{V})$ | Current <br> $(\mathbf{A})$ | Resistance <br> $(\Omega)$ | Inductance <br> $(\mathrm{mH})$ | Holding <br> torque <br> $(\mathrm{mNm})$ | Detent <br> torque <br> $(\mathrm{mNm})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25L24B0900 | $15^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 35 | 4,8 |
| 25L24B2500 | $15^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 45 | 4,8 |
| 24L48B0900 | $7,5^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 43 | 5,0 |
| 25L48B2500 | $7,5^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 45 | 5,0 |

Optional Features

- Gearbox
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft
- Other specifications

Mechanical Dimensions


## Dynamic Torque Curves

25L24B0900
Conditions: Bi-polar Constant Current Driver
Driver:
Mode:

## 25L24B2500

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## 25L48B2500

Conditions: Bi-polar Constant Current Driver
Driver:
Mode:

AMIS 30522
Full Step
$\int$ Pull in torque $\int$ Pull out torque


## Torque

(mN.m)


## STEGIA

## 35S Series

## Key Features

- High torque
- Low noise
- Small size

General Specifications

| Series | Step <br> angle <br> $\left({ }^{\circ}\right)$ | Voltage <br> $(\mathbf{V})$ | Current <br> $(\mathbf{A})$ | Resistance <br> $(\Omega)$ | Inductance <br> $(\mathrm{mH})$ | Holding <br> torque <br> $(\mathrm{mNm})$ | Detent <br> torque <br> $(\mathrm{mNm})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35S24B0700 | $15^{\circ}$ | 24 | 0,5 | 7,5 | 7,3 | 38 | 5,0 |
| 35S24B2500 | $15^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 60 | 5,0 |
| 35S48B0700 | $7,5^{\circ}$ | 24 | 0,5 | 7,5 | 10 | 50 | 7,0 |
| 35S48B2500 | $7,5^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 80 | 8,0 |
| 35S96B0700 | $3,75^{\circ}$ | 24 | 0,5 | 7,5 | 11,9 | 35 | 4,5 |
| 35S96B2500 | $3,75^{\circ}$ | 24 | 0,5 | 25 | 37 | 45 | 4,5 |

## Optional Features

Mechanical Dimensions

- Gearbox
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft
- Other specifications



## Dynamic Torque Curves

35S24B0700
Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step

## 35S24B2500

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

35S48B0700
Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## 35S48B2500

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

Dynamic Torque Curves
3559680700
Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step


35S96B2500
Conditions:
Driver:
Mode: Full Step


## Rotary PM with Gearbox

## STEGIA

## 15SG Series

## Key Features

- High torque
- Low noise
- Small size
- Motor step angle $9^{\circ} \& 18^{\circ}$


## General Specifications

| Series | Reduction (:1) | Step angle <br> ( ${ }^{\circ}$ ) | Voltage (V) | Current <br> (A) | Resistance (ohm) | Inductance ( mH ) | Holding torque (mNm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15SG20B10R034-00 | 34 | 0,529 ${ }^{\circ}$ | 12 | 0,4 | 10 | 4,1 | 170 |
| 15SG20B10R053-00 | 53 | $0,340^{\circ}$ | 12 | 0,4 | 10 | 4,1 | 260 |
| 15SG20B10R097-00 | 97 | $0,186^{\circ}$ | 12 | 0,4 | 10 | 4,1 | 400 |
| 15SG20B10R150-00 | 150 | $0,120^{\circ}$ | 12 | 0,4 | 10 | 4,1 | 400 |
| 15SG20B10R420-00 | 420 | 0,043 ${ }^{\circ}$ | 12 | 0,4 | 10 | 4,1 | 400 |
| 15SG20B20R034-00 | 34 | 0,529 ${ }^{\circ}$ | 12 | 0,4 | 20 | 6,7 | 260 |
| 15SG20B20R053-00 | 53 | 0,340 ${ }^{\circ}$ | 12 | 0,4 | 20 | 6,7 | 400 |
| 15SG20B20R097-00 | 97 | $0,186^{\circ}$ | 12 | 0,4 | 20 | 6,7 | 400 |
| 15SG20B20R150-00 | 150 | $0,120^{\circ}$ | 12 | 0,4 | 20 | 6,7 | 400 |
| 15SG20B20R420-00 | 420 | 0,043 ${ }^{\circ}$ | 12 | 0,4 | 20 | 6,7 | 400 |
| 15SG40B10R034-00 | 34 | $0,265^{\circ}$ | 12 | 0,4 | 10 | 5 | 150 |
| 15SG40B10R053-00 | 53 | $0,170^{\circ}$ | 12 | 0,4 | 10 | 5 | 240 |
| 15SG40B10R097-00 | 97 | 0,093 ${ }^{\circ}$ | 12 | 0,4 | 10 | 5 | 400 |


| 15SG4OB1OR150-00 | 150 | $0,060^{\circ}$ | 12 | 0,4 | 10 | 5 | 400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 15SG4OB1OR420-00 | 420 | $0,021^{\circ}$ | 12 | 0,4 | 10 | 5 | 400 |
| 15SG4OB2OR034-00 | 34 | $0,265^{\circ}$ | 12 | 0,4 | 20 | 6,5 | 200 |
| 15SG4OB2OR053-00 | 53 | $0,170^{\circ}$ | 12 | 0,4 | 20 | 6,5 | 310 |
| 15SG4OB2OR097-00 | 97 | $0,093^{\circ}$ | 12 | 0,4 | 20 | 6,5 | 400 |
| 15SG4OB2OR150-00 | 150 | $0,060^{\circ}$ | 12 | 0,4 | 20 | 6,5 | 400 |
| 15SG4OB2OR420-00 | 420 | $0,021^{\circ}$ | 12 | 0,4 | 20 | 6,5 | 400 |

Optional Features

- Integrated driver
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft


Length

- $28,5 \mathrm{~mm}$ for $34: 1 \& 53: 1$
- 30,0mm for 97:1 \& 150:1
- $31,6 \mathrm{~mm}$ for $420: 1$


## Dynamic Torque Curves

15SG20B10
Conditions:
Driver: AMIS 30522
Mode: Full Step


## 15SG40B10

Conditions: Bi-polar Constant Current Driver Driver:
Mode: Full Step


## 15SG20B20

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

## 15SG40B20

Conditions: Bi-polar Constant Current Driver Driver:
Mode:

AMIS 30522 Full Step


## STEGIA

## 25TSG Series

## Key Features

- High torque
- Low noise
- Small size
- Motor step angle $3,75^{\circ} \& 7,5^{\circ} \& 15^{\circ}$
- 

General Specifications

| Series | Reduction <br> $(: 1)$ | Step <br> angle <br> $\left({ }^{\circ}\right)$ | Voltage <br> $(\mathrm{V})$ | Current <br> $(\mathbf{A})$ | Resistance <br> $($ (ohm $)$ | Inductance <br> $(\mathrm{mH})$ | Holding <br> torque <br> $(\mathrm{mNm})$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25TSG24B06R010-00 | 10 | $1,5^{\circ}$ | 24 | 0,4 | 6 | 2,3 | 80 |
| 25TSG24B06R021-00 | 21 | $0,714^{\circ}$ | 24 | 0,4 | 6 | 2,3 | 168 |
| 25TSG24B06R043-00 | 43 | $0,349^{\circ}$ | 24 | 0,4 | 6 | 2,3 | 344 |
| 25TSG24B06R090-00 | 90 | $0,167^{\circ}$ | 24 | 0,4 | 6 | 2,3 | 400 |
| 25TSG24B06R188-00 | 188 | $0,080^{\circ}$ | 24 | 0,4 | 6 | 2,3 | 400 |
| 25TSG24B06R392-00 | 392 | $0,038^{\circ}$ | 24 | 0,4 | 6 | 2,3 | 400 |
| 25TSG24B23R010-00 | 10 | $1,5^{\circ}$ | 24 | 0,4 | 23 | 6,3 | 130 |
| 25TSG24B23R021-00 | 21 | $0,714^{\circ}$ | 24 | 0,4 | 23 | 6,3 | 273 |
| 25TSG24B23R043-00 | 43 | $0,349^{\circ}$ | 24 | 0,4 | 23 | 6,3 | 400 |
| 25TSG24B23R090-00 | 90 | $0,167^{\circ}$ | 24 | 0,4 | 23 | 6,3 | 400 |
| 25TSG24B23R188-00 | 188 | $0,080^{\circ}$ | 24 | 0,4 | 23 | 6,3 | 400 |
| 25TSG24B23R392-00 | 392 | $0,038^{\circ}$ | 24 | 0,4 | 23 | 6,3 | 400 |
| 25TSG48B06R010-00 | 10 | $0,75^{\circ}$ | 24 | 0,4 | 6 | 2,8 | 140 |
| 25TSG48B06R021-00 | 21 | $0,357^{\circ}$ | 24 | 0,4 | 6 | 2,8 | 294 |


| 25TSG48B06R043-00 | 43 | $0,174^{\circ}$ | 24 | 0,4 | 6 | 2,8 | 400 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25TSG48B06R090-00 | 90 | $0,083^{\circ}$ | 24 | 0,4 | 6 | 2,8 | 400 |
| 25TSG48B06R188-00 | 188 | $0,040^{\circ}$ | 24 | 0,4 | 6 | 2,8 | 400 |
| 25TSG48B06R392-00 | 392 | $0,019^{\circ}$ | 24 | 0,4 | 6 | 2,8 | 400 |
| 25TSG48B23R010-00 | 10 | 0,75 ${ }^{\circ}$ | 24 | 0,4 | 23 | 8,8 | 220 |
| 25TSG48B23R021-00 | 21 | 0,357 ${ }^{\circ}$ | 24 | 0,4 | 23 | 8,8 | 400 |
| 25TSG48B23R043-00 | 43 | $0,174^{\circ}$ | 24 | 0,4 | 23 | 8,8 | 400 |
| 25TSG48B23R090-00 | 90 | 0,083 ${ }^{\circ}$ | 24 | 0,4 | 23 | 8,8 | 400 |
| 25TSG48B23R188-00 | 188 | $0,040^{\circ}$ | 24 | 0,4 | 23 | 8,8 | 400 |
| 25TSG48B23R392-00 | 392 | $0,019^{\circ}$ | 24 | 0,4 | 23 | 8,8 | 400 |
| 25TSG96B06R010-00 | 10 | 0,375 ${ }^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 150 |
| 25TSG96B06R021-00 | 21 | $0,179^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 315 |
| 25TSG96B06R043-00 | 43 | 0,087 ${ }^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 400 |
| 25TSG96B06R090-00 | 90 | 0,042 ${ }^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 400 |
| 25TSG96B06R188-00 | 188 | $0,020^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 400 |
| 25TSG96B06R392-00 | 392 | 0,010 ${ }^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 400 |
| 25TSG96B23R010-00 | 10 | 0,375 ${ }^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 200 |
| 25TSG96B23R021-00 | 21 | $0,179^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 400 |
| 25TSG96B23R043-00 | 43 | 0,087 ${ }^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 400 |
| 25TSG96B23R090-00 | 90 | 0,042 ${ }^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 400 |

Page | 19

| 25TSG96B23R188-00 | 188 | $0,020^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 25TSG96B23R392-00 | 392 | $0,010^{\circ}$ | 24 | 0,4 | 6 | 3,8 | 400 |

## Optional Features

- Integrated driver
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft


## Length

- 26,5mm for 10:1 \& 21:1
- $31,5 \mathrm{~mm}$ for $43: 1 \& 90: 1$
- 36,5mm for 188:1 \& 392:1


## Dynamic Torque Curves

## 25TSG24B06

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step


## Mechanical Dimensions



## 25TSG24B23

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## Dynamic Torque Curves

25TSG48B06
Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step


## 25TSG96B06

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step


## 25TSG48B23

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

## 25TSG96B23

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step


## STEGIA

## 25LSG Series

## Key Features

- High torque
- Low noise
- Small size
- Motor step angle $7,5^{\circ}$ \& $15^{\circ}$

General Specifications

| Series | Reduction (:1) | Step angle ( ${ }^{\circ}$ ) | Voltage (V) | Current <br> (A) | Resistance (ohm) | Inductance ( mH ) | Holding torque (mNm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25LSG24B09R010-00 | 10 | 1,500 ${ }^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 350 |
| 25LSG24B09R021-00 | 21 | 0,714 ${ }^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 400 |
| 25LSG24B09R043-00 | 43 | 0,349 ${ }^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 400 |
| 25LSG24B09R090-00 | 90 | $0,16{ }^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 400 |
| 25LSG24B09R188-00 | 188 | 0,080 ${ }^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 400 |
| 25LSG24B09R392-00 | 392 | 0,038 ${ }^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 400 |
| 25LSG24B25R010-00 | 10 | $1,500^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 400 |
| 25LSG24B25R021-00 | 21 | 0,714 ${ }^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 400 |
| 25LSG24B25R043-00 | 43 | 0,349 ${ }^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 400 |
| 25LSG24B25R090-00 | 90 | $0,167^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 400 |
| 25LSG24B25R188-00 | 188 | 0,080 ${ }^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 400 |
| 25LSG24B25R392-00 | 392 | 0,038 ${ }^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 400 |


| 25LSG48B09R010-00 | 10 | $0,750^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 25LSG48B09R021-00 | 21 | $0,357^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 400 |
| 25LSG48B09R043-00 | 43 | $0,174^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 400 |
| 25LSG48B09R090-00 | 90 | $0,083^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 400 |
| 25LSG48B09R188-00 | 188 | $0,040^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 400 |
| 25LSG48B09R392-00 | 392 | $0,019^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 400 |
| 25LSG48B25R010-00 | 10 | $0,750^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 400 |
| 25LSG48B25R021-00 | 21 | $0,357^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 400 |
| 25LSG48B25R043-00 | 43 | $0,174^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 400 |
| 25LSG48B25R090-00 | 90 | $0,083^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 400 |
| 25LSG48B25R188-00 | 188 | $0,040^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 400 |
| 25LSG48B25R392-00 | 392 | $0,019^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 400 |

Optional Features

- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft

Length

- 35,1mm for 10:1 \& 21:1
- $40,1 \mathrm{~mm}$ for $43: 1 \& 90: 1$
- 45,1mm for 188:1 \& 392:1


## Mechanical Dimensions



## Dynamic Torque Curves

## 25LSG24B09

Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step

## 25LSG24B25

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

## 25LSG48B09

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## 25LSG48B25

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## STEGIA

## 35BS Series

## Key Features

- High torque
- Low noise
- Small size
- Motor step angle $3,75^{\circ}$ \& $7,5^{\circ}$ \& $15^{\circ}$


## General Specifications

| Series | Reduction <br> $(: 1)$ | Step <br> angle <br> $\left({ }^{\circ}\right)$ | Voltage <br> $(\mathbf{V})$ | Current <br> $(\mathbf{A})$ | Resistance <br> $($ (ohm) | Inductance <br> $(\mathrm{mH})$ | Holding <br> torque <br> $(\mathrm{mNm})$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 35BS24B07R012-00 | 12 | $1,250^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 456 |
| 35BS24B07R021-00 | 21 | $0,714^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 798 |
| 35BS24B07R036-00 | 36 | $0,417^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 800 |
| 35BS24B07R072-00 | 72 | $0,208^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 800 |
| 35BS24B07R149-00 | 149 | $0,101^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 800 |
| 35BS24B07R208-00 | 208 | $0,072^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 800 |
| 35BS24B07R608-00 | 608 | $0,025^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 800 |
| 35BS24B07R1470-00 | 1470 | $0,010^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 800 |
| 35BS24B25R012-00 | 12 | $1,250^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 720 |
| 35BS24B25R021-00 | 21 | $0,714^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 800 |
| 35BS24B25R036-00 | 36 | $0,417^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 800 |
| 35BS24B25R252-00 | 72 | $0,208^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 800 |
| 35BS24B25R149-00 | 149 | $0,101^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 800 |


| 35BS24B25R208-00 | 208 | 0,072 ${ }^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35BS24B25R608-00 | 608 | 0,025 ${ }^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 800 |
| 35BS24B25R1470-00 | 1470 | 0,010 ${ }^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 800 |
| 35BS48B07R01 2-00 | 12 | 0,625 ${ }^{\circ}$ | 24 | 0,5 | 7 | 10 | 600 |
| 35BS48B07R021-00 | 21 | 0,357 ${ }^{\circ}$ | 24 | 0,5 | 7 | 10 | 800 |
| 35BS48B07R036-00 | 36 | 0,208 ${ }^{\circ}$ | 24 | 0,5 | 7 | 10 | 800 |
| 35BS48B07R072-00 | 72 | $0,104^{\circ}$ | 24 | 0,5 | 7 | 10 | 800 |
| 35BS48B07R149-00 | 149 | $0,050^{\circ}$ | 24 | 0,5 | 7 | 10 | 800 |
| 35BS48B07R208-00 | 208 | $0,036^{\circ}$ | 24 | 0,5 | 7 | 10 | 800 |
| 35BS48B07R608-00 | 608 | 0,012 ${ }^{\circ}$ | 24 | 0,5 | 7 | 10 | 800 |
| 35BS48B07R1470-00 | 1470 | $0,005^{\circ}$ | 24 | 0,5 | 7 | 10 | 800 |
| 35BS48B25R01 2-00 | 12 | 0,625 ${ }^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 800 |
| 35BS48B25R021-00 | 21 | 0,357 ${ }^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 800 |
| 35BS48B25R036-00 | 36 | 0,208 ${ }^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 800 |
| 35BS48B25R252-00 | 72 | $0,104^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 800 |
| 35BS48B25R149-00 | 149 | 0,050 ${ }^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 800 |
| 35BS48B25R208-00 | 208 | $0,036^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 800 |
| 35BS48B25R608-00 | 608 | 0,012 ${ }^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 800 |
| 35BS48B25R1470-00 | 1470 | 0,005 ${ }^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 800 |
| 35BS96B07R01 2-00 | 12 | 0,313 ${ }^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 420 |

Page | 26

| 35BS96B07R021-00 | 21 | 0,179 ${ }^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 735 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35BS96B07R036-00 | 36 | $0,104^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 800 |
| 35BS96B07R072-00 | 72 | $0,052^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 800 |
| 35BS96B07R149-00 | 149 | 0,025 ${ }^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 800 |
| 35BS96B07R208-00 | 208 | 0,018 ${ }^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 800 |
| 35BS96B07R608-00 | 608 | $0,006^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 800 |
| 35BS96B07R1470-00 | 1470 | $0,003^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 800 |
| 35BS96B25R01 2-00 | 12 | 0,313 ${ }^{\circ}$ | 24 | 0,5 | 25 | 37 | 540 |
| 35BS96B25R021-00 | 21 | $0,179^{\circ}$ | 24 | 0,5 | 25 | 37 | 800 |
| 35BS96B25R036-00 | 36 | $0,104^{\circ}$ | 24 | 0,5 | 25 | 37 | 800 |
| 35BS96B25R252-00 | 72 | $0,052^{\circ}$ | 24 | 0,5 | 25 | 37 | 800 |
| 35BS96B25R149-00 | 149 | $0,025^{\circ}$ | 24 | 0,5 | 25 | 37 | 800 |
| 35BS96B25R208-00 | 208 | $0,018^{\circ}$ | 24 | 0,5 | 25 | 37 | 800 |
| 35BS96B25R608-00 | 608 | $0,006^{\circ}$ | 24 | 0,5 | 25 | 37 | 800 |
| 35BS96B25R1470-00 | 1470 | $0,003^{\circ}$ | 24 | 0,5 | 25 | 37 | 800 |

Page | 27

## Optional Features

- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft


## Mechanical Dimensions



## Dynamic Torque Curves

35BS24B07
Conditions: Bi-polar Constant Current Driver Driver: Mode: AMIS 30522
Mode: Full Step

## 35BS24B25

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step


## Dynamic Torque Curves

## 35BS48B07

Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step


## 35BS48B25

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

## 35BS96B07

Conditions: Driver: Mode:

Bi-polar Constant Current Driver AMIS 30522
Full Step


## 35S96B2500

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step

## STEGIA

## 35RH Series

## Key Features

- High torque
- Low noise
- Small size
- Motor step angle $3,75^{\circ} \& 7,5^{\circ} \& 15^{\circ}$

General Specifications

| Series | Reduction <br> $(: 1)$ | Step <br> angle <br> $\left({ }^{\circ}\right)$ | Voltage <br> $(\mathbf{V})$ | Current <br> $(\mathbf{A})$ | Resistance <br> $($ (ohm) | Inductance <br> $(\mathbf{m H})$ | Holding <br> torque <br> $(\mathbf{m N m})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35RH24B07R015-00 | 15 | $1,000^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 570 |
| 35RH24B07R030-00 | 30 | $0,500^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 1140 |
| 35RH24B07R075-00 | 75 | $0,200^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 1500 |
| 35RH24B07R100-00 | 100 | $0,150^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 1500 |
| 35RH24B07R200-00 | 200 | $0,075^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 1500 |
| 35RH24B07R250-00 | 250 | $0,060^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 1500 |
| 35RH24B07R510-00 | 510 | $0,029^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 1500 |
| 35RH24B07R630-00 | 630 | $0,024^{\circ}$ | 24 | 0,5 | 7 | 7,3 | 1500 |
| 35RH24B25R015-00 | 15 | $1,000^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 900 |
| 35RH24B25R030-00 | 30 | $0,500^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 1500 |
| 35RH24B25R255-00 | 75 | $0,200^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 1500 |
| 35RH24B25R100-00 | 100 | $0,150^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 1500 |
| 35RH24B25R200-00 | 200 | $0,075^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 1500 |


| 35RH24B25R250-00 | 250 | 0,060 ${ }^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 1500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35RH24B25R510-00 | 510 | 0,029 ${ }^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 1500 |
| 35RH24B25R630-00 | 630 | 0,024 ${ }^{\circ}$ | 24 | 0,5 | 25 | 22,3 | 1500 |
| 35RH48B07R015-00 | 15 | $0,500^{\circ}$ | 24 | 0,5 | 7 | 10 | 570 |
| 35RH48B07 R030-00 | 30 | 0,250 ${ }^{\circ}$ | 24 | 0,5 | 7 | 10 | 1140 |
| 35RH48B07R075-00 | 75 | $0,100^{\circ}$ | 24 | 0,5 | 7 | 10 | 1500 |
| 35RH48B07R100-00 | 100 | 0,075 ${ }^{\circ}$ | 24 | 0,5 | 7 | 10 | 1500 |
| 35RH48B07 R200-00 | 200 | 0,038 ${ }^{\circ}$ | 24 | 0,5 | 7 | 10 | 1500 |
| 35RH48B07 R250-00 | 250 | 0,030 ${ }^{\circ}$ | 24 | 0,5 | 7 | 10 | 1500 |
| 35RH48B07R510-00 | 510 | 0,015 ${ }^{\circ}$ | 24 | 0,5 | 7 | 10 | 1500 |
| 35RH48B07 R630-00 | 630 | $0,012^{\circ}$ | 24 | 0,5 | 7 | 10 | 1500 |
| 35RH48B25R015-00 | 15 | $0,500^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 900 |
| 35RH48B25R030-00 | 30 | 0,250 ${ }^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 1500 |
| 35RH48B25R255-00 | 75 | $0,100^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 1500 |
| 35RH48B25R100-00 | 100 | 0,075 ${ }^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 1500 |
| 35RH48B25R200-00 | 200 | 0,038 ${ }^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 1500 |
| 35RH48B25R250-00 | 250 | 0,030 ${ }^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 1500 |
| 35RH48B25R510-00 | 510 | $0,015^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 1500 |
| 35RH48B25R630-00 | 630 | $0,012^{\circ}$ | 24 | 0,5 | 25 | 27,2 | 1500 |
| 35RH96B07R015-00 | 15 | $0,250^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 570 |

Page | 31

| 35RH96B07R030-00 | 30 | $0,125^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 1140 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 35RH96B07R075-00 | 75 | $0,050^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 1500 |
| 35RH96B07R100-00 | 100 | $0,038^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 1500 |
| 35RH96B07R200-00 | 200 | $0,019^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 1500 |
| 35RH96B07R250-00 | 250 | $0,015^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 1500 |
| 35RH96B07R510-00 | 510 | $0,007^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 1500 |
| 35RH96B07R630-00 | 630 | $0,006^{\circ}$ | 24 | 0,5 | 7 | 11,9 | 1500 |
| 35RH96B25R015-00 | 15 | $0,250^{\circ}$ | 24 | 0,5 | 25 | 37 | 900 |
| 35RH96B25R030-00 | 30 | $0,125^{\circ}$ | 24 | 0,5 | 25 | 37 | 1500 |
| 35RH96B25R255-00 | 75 | $0,050^{\circ}$ | 24 | 0,5 | 25 | 37 | 1500 |
| 35RH96B25R100-00 | 100 | $0,038^{\circ}$ | 24 | 0,5 | 25 | 37 | 1500 |
| 35RH96B25R200-00 | 200 | $0,019^{\circ}$ | 24 | 0,5 | 25 | 37 | 1500 |
| 35RH96B25R250-00 | 250 | $0,015^{\circ}$ | 24 | 0,5 | 25 | 37 | 1500 |
| 35RH96B25R510-00 | 510 | $0,007^{\circ}$ | 24 | 0,5 | 25 | 37 | 1500 |
| 35RH96B25R630-00 | 630 | $0,006^{\circ}$ | 24 | 0,5 | 25 | 37 | 1500 |

Page | 32

## Optional Features

- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft


## Length

- $42,8 \mathrm{~mm}$ for $15: 1$ \& 30:1
- 45,3mm for 75:1 \& 100:1
- $47,8 \mathrm{~mm}$ for 200:1 \& 250:1
- $50,8 \mathrm{~mm}$ for $510: 1$ \& 630:1


## Dynamic Torque Curves

## 35RH24B07

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step

## Mechanical Dimensions



## 35RH24B25

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## Dynamic Torque Curves

35RH48B07
Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step


## 35RH48B25

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

## 35RH96B07

Conditions: Driver: Mode:

Bi-polar Constant Current Driver AMIS 30522
Full Step
Pull in torque

| Torque |
| :--- |
| $(\mathrm{mN} . \mathrm{m})$ |

40

## 35RH96B25

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step

## Linear PM

## STEGIA

## LM25L Series

## Key Features

- Captive, high force
- Low noise, small size
- Pitch 0.5 mm \& 1.0 mm


## General Specifications

| Series | Step <br> angle <br> $\left({ }^{\circ}\right)$ | Voltage <br> $(\mathbf{V})$ | Current <br> $(\mathbf{A})$ | Resistance <br> $($ (ohm) | Inductance <br> $(\mathbf{m H})$ | Increment <br> $(\mathbf{m m} / \mathrm{step})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| LM25L100CB0900 | $15^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 0,0416 |
| LM25L100CB2500 | $15^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 0,0416 |
| LM25L101CB0900 | $7,5^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 0,0208 |
| LM25L101CB2500 | $7,5^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 0,0208 |
| LM25L050CB0900 | $15^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 0,0208 |
| LM25L050CB2500 | $15^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 0,0208 |
| LM25L051CB0900 | $7,5^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 0,0104 |
| LM25L051CB2500 | $7,5^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 0,0104 |

Optional Features

- Custom winding, wire harness
- Custom leadscrew
- Drive electronics
- Other specifications

Mechanical Dimensions



## Dynamic Force Curves

LM25L100CB0900
Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## LM25L100CB2500

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

## LM25L050CB0900

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step

## LM25L050CB2500

Conditions: Bi-polar Constant Current Driver
Driver:
Mode: AMIS 30522
Full Step

## Dynamic Force Curves

LM25L101CB0900
Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## LM25L051CB0900

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step


## LM25L101CB2500

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## LM25L051CB2500

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522 Mode: Full Step


## STEGIA

## LM25L Series

## Key Features

- Non-Captive, high force
- Low noise, small size
- Pitch 0.5 mm \& 1.0 mm


## General Specifications

| Series | Step <br> angle <br> $\left({ }^{\circ}\right)$ | Voltage <br> $(\mathrm{V})$ | Current <br> $(\mathrm{A})$ | Resistance <br> $($ (ohm) | Inductance <br> $(\mathbf{m H})$ | Increment <br> $(\mathbf{m m} / \mathrm{step})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| LM25L100NB0900 | $15^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 0,0416 |
| LM25L100NB2500 | $15^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 0,0416 |
| LM25L101NB0900 | $7,5^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 0,0208 |
| LM25L101NB2500 | $7,5^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 0,0208 |
| LM25L050NB0900 | $15^{\circ}$ | 24 | 0,5 | 9 | 6,7 | 0,0208 |
| LM25L050NB2500 | $15^{\circ}$ | 24 | 0,5 | 25 | 17,6 | 0,0208 |
| LM25L051NB0900 | $7,5^{\circ}$ | 24 | 0,5 | 9 | 8,7 | 0,0104 |
| LM25L051 NB2500 | $7,5^{\circ}$ | 24 | 0,5 | 25 | 21,3 | 0,0104 |

Optional Features
Mechanical Dimensions

- Custom winding, wire harness
- Custom leadscrew
- Drive electronics
- Other specifications



## Dynamic Force Curves

LM25L100NB0900
Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step
$\longrightarrow$ Pull in Force $\int$ Pull out Force


## LM25L100NB2500

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

## LM25L050NB0900

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

## LM25L050NB2500

Conditions: Bi-polar Constant Current Driver
Driver:
Mode: AMIS 30522
Full Step


## Dynamic Force Curves

## LM25L101NB0900

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

## LM25L101NB2500

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

## LM25L051NB0900

Conditions: Bi-polar Constant Current Driver
Driver:
Mode:
7.5 degree 1.0 mm pitch

7.5 degree 1.0 mm pitch


## LM25L051NB2500

Conditions: Bi-polar Constant Current Driver
Driver:
Mode:

## AMIS 30522

Full Step


## Synchronous

## STEGIA

## 15S Series

## Key Features

- High torque
- Low noise


General Specifications

| Series | Frequency <br> (Hz) | Voltage <br> (Vac) | Speed @ <br> 50/60 Hz <br> (RPM) | Power <br> Output <br> (W) | Capacitor <br> (uF) | Running <br> (torque <br> $(\mathrm{mNm})$ | Temperature <br> rise ( ${ }^{\circ}$ ) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15S20S0240 | $50 / 60$ | 24 | $600 / 720$ | 0,91 | 2,2 | 0,5 | 54 |
| 15S40S0240 | $50 / 60$ | 24 | $300 / 360$ | 0,91 | 2,2 | 0,8 | 52 |

## Optional Features

- Gearbox
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft
- Other specifications


## Mechanical Dimensions



## Key Features

- High torque
- Low noise
- Small size


## General Specifications

| Series | Frequency <br> (Hz) | Voltage <br> (Vac) | Speed @ <br> 50/60 Hz <br> (RPM) | Power <br> Output <br> (W) | Capacitor <br> (uF) | Running <br> (trque <br> $(\mathrm{mNm})$ | Temperature <br> rise ( $\left.{ }^{\circ}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25T24S0240 | $50 / 60$ | 24 | $500 / 600$ | 1,11 | 3,3 | 2,5 | 48 |
| 25T24S0480 | $50 / 60$ | 48 | $500 / 600$ | 1,12 | 1,0 | 3,5 | 52 |
| 25T48S0240 | $50 / 60$ | 24 | $250 / 300$ | 1,11 | 3,3 | 3,5 | 46 |
| 25T48S0480 | $50 / 60$ | 48 | $250 / 300$ | 1,12 | 1,0 | 5 | 43 |
| 25T96S0240 | $50 / 60$ | 24 | $125 / 150$ | 1,11 | 3,3 | 6 | 48 |
| 25T96S0480 | $50 / 60$ | 48 | $125 / 150$ | 1,12 | 1,0 | 7 | 52 |

## Optional Features

## Mechanical Dimensions

- Gearbox
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft
- Other specifications



## STEGIA

## 25L Series

## Key Features

- High torque
- Low noise
- Small size


## General Specifications

| Series | Frequency <br> $(\mathrm{Hz})$ | Voltage <br> (Vac) | Speed @ <br> $\mathbf{5 0 / 6 0 ~ H z}$ <br> $($ RPM $)$ | Power <br> Output <br> (W) | Capacitor <br> (uF) | Running <br> torque <br> $(\mathrm{mNm})$ | Temperature <br> rise ( $\left.{ }^{\circ}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25L24S0240 | $50 / 60$ | 24 | $500 / 600$ | 2,3 | 0,1 | 19 | 50 |
| 25L24S1100 | $50 / 60$ | 110 | $500 / 600$ | 2,6 | 4,7 | 11 | 45 |
| 25L48S0240 | $50 / 60$ | 24 | $250 / 300$ | 2,3 | 0,1 | 23 | 49 |
| 25L48S1100 | $50 / 60$ | 110 | $250 / 300$ | 2,6 | 4,7 | 13 | 49 |

## Optional Features

- Gearbox
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft
- Other specifications

Mechanical Dimensions


## STEGIA

## 35S Series

## Key Features

- High torque
- Low noise
- Small size


## General Specifications

| Series | Frequency (Hz) | Voltage (Vac) | ```Speed @ 50/60 Hz (RPM)``` | Power Output (W) | Capacitor (uF) | Running torque (mNm) | Temperature rise ( ${ }^{\circ}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35S24S0240 | 50/60 | 24 | 500/600 | 2,70 | 4.7 | 20 | 42 |
| 35S24S1100 | 50/60 | 110 | 500/600 | 2,72 | 0.33 | 16 | 51 |
| 35S24S2300 | 50/60 | 230 | 500/600 | 2,62 | 0.1 | 21 | 49 |
| 35S48S0240 | 50/60 | 24 | 250/300 | 2,70 | 4.7 | 23 | 49 |
| 35S48S1100 | 50/60 | 110 | 250/300 | 2,72 | 0.33 | 32 | 54 |
| 35S48S2300 | 50/60 | 230 | 250/300 | 2,62 | 0.1 | 40 | 50 |
| 35S96S0240 | 50/60 | 24 | 125/150 | 2,70 | 4.7 | 32 | 47 |
| 35S96S1100 | 50/60 | 110 | 125/150 | 2,72 | 0.33 | 25 | 47 |
| 35S96S2300 | 50/60 | 230 | 125/150 | 2,62 | 0.1 | 24 | 47 |

## Optional Features

- Gearbox
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft
- Other specifications


## Mechanical Dimensions



## Motors with Integrated Electronics

## STEGIA

## 15SE Series

General Specifications

| Series | Step <br> angle <br> ()$\left.^{\circ}\right)$ | Voltage <br> $(\mathrm{V})$ | Current <br> $(\mathbf{A})$ | Resistance <br> $(\Omega)$ | Inductance <br> $(\mathrm{mH})$ | Holding <br> torque <br> $(\mathrm{mNm})$ | Detent <br> torque <br> $(\mathrm{mNm})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15SE20B1000 | 18 | 12 | 0,4 | 10 | 4,1 | 5,0 | 0,5 |
| 15SE20B2000 | 18 | 12 | 0,4 | 20 | 6,7 | 7,8 | 0,6 |
| 15SE40B1000 | 9 | 12 | 0,4 | 10 | 5,0 | 4,6 | 0,4 |
| 15SE40B2000 | 9 | 12 | 0,4 | 20 | 6,5 | 6,0 | 0,5 |

Optional Features

- Integrated driver
- ${ }^{2} \mathrm{C}, \mathrm{LIN}$
- Gearbox
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft

Mechanical Dimensions



## Key Features

- Sensorless stall detection
- Automatic selection of fast and slow decay mode
- No external fly-back diodes required
- Configurable speed, and acceleration
- Field-programmable node addresses
- High-temp warning and management
- Peak current 800 mA (for driver chip)
- 32 Motors can be connected to each master
- 400 kbit serial data transfer


## General Description

Stegia 1500E series is our stepper motor series with integrated single-chip position controller and control/diagnostic interface. The 1500E is a dedicated motor solution connected remotely with the $I^{2} \mathrm{C}$ bus.

The motor receives positioning instructions through the bus and positions the motor to the desired position. The on-chip position controller is configurable for positioning ranges as well as parameters for speed, acceleration and deceleration.

Stegia $1500 E$ series acts as a slave on the $I^{2} \mathrm{C}$ bus, and the master can fetch specific status information like actual position, error flags, etc. from each individual slave node.

Integrated sensorless step-loss detection prevents the positioner from losing steps and stops the motor when running into stall. This enables silent, yet accurate position calibrations and allows semi-closed loop operation when approaching the mechanical end-positions.

The chip is implemented in I2T100 technology, enabling both high voltage analog circuitry and digital functionality on the same chip. Stegia 1500 E stepper motor series is fully compatible with the automotive voltage requirements.

## Motor Driver

Micro-stepping technology
Sensorless stall detection
Peak current up to 800mA (for driver)
Fixed frequency PWM current-control
Automatic selection of fast and slow decay mode 14V/24V compliant

## Protection

Over-current protection
Under-voltage management
Open circuit detection
High-temp. warning and management Low-temp flag

## Controller with RAM and OTP Memory

Position controller
Configurable speed, current and acceleration
Input to connect optional motion switch

## $I^{2} \mathrm{C}$ Interface

Bi-directional 2-wire bus for Inter IC Control
Field-programmable node addresses
Full diagnostics and status information

## EMI Compatibility

High voltage outputs with slope control HV outputs with slope control

## Dynamic Torque Curves

15SE20B1000
Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step

## 15SE20B2000

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step
$\int$ Pull in torque Pull out torque

Torque
(mN.m)


## 15SE40B1000

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step

Torque


15SE40B2000
Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step
$\longrightarrow$ Pull in torque Pull out torque


## STEGIA

## 25TE Series

General Specifications

| Series | Step <br> angle <br> $\left({ }^{\circ}\right)$ | Voltage <br> $(\mathbf{V})$ | Current <br> $(\mathbf{A})$ | Resistance <br> $(\Omega)$ | Inductance <br> $(\mathrm{mH})$ | Holding <br> torque <br> $(\mathrm{mNm})$ | Detent <br> torque <br> $(\mathrm{mNm})$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25TE24B1500 | $15^{\circ}$ | 24 | 0,4 | 15 | 5,6 | 12 | 2,2 |
| 25TE24B2300 | $15^{\circ}$ | 24 | 0,4 | 23 | 6,3 | 13 | 2,2 |
| 25TE48B1500 | $7,5^{\circ}$ | 24 | 0,4 | 15 | 8,0 | 21 | 2,7 |
| 25TE48B2300 | $7,5^{\circ}$ | 24 | 0,4 | 23 | 8,8 | 22 | 2,7 |
| 25TE96B1500 | $3,75^{\circ}$ | 24 | 0,4 | 15 | 10,7 | 17 | 1,8 |
| 25TE96B2300 | $3,75^{\circ}$ | 24 | 0,4 | 23 | 10,3 | 20 | 1,8 |

Optional Features

## Mechanical Dimensions

- Integrated driver
- ${ }^{2} \mathrm{C}, \mathrm{LIN}$
- Gearbox
- Custom winding, wire harness
- Custom pinion, leadscrew
- Custom shaft



## Key Features

- Sensorless stall detection
- Automatic selection of fast and slow decay mode
- No external fly-back diodes required
- Configurable speed, and acceleration
- Field-programmable node addresses
- High-temp warning and management
- Peak current 800 mA (for driver chip)
- 32 Motors can be connected to each master
- 400 kbit serial data transfer


## General Description

Stegia 2500TE series is our stepper motor series with integrated single-chip position controller and control/diagnostic interface. The 2500TE is a dedicated motor solution connected remotely with the $\mathrm{I}^{2} \mathrm{C}$ bus.

The motor receives positioning instructions through the bus and positions the motor to the desired position. The on-chip position controller is configurable for positioning ranges as well as parameters for speed, acceleration and deceleration.

Stegia 2500TE series acts as a slave on the $\mathrm{I}^{2} \mathrm{C}$ bus, and the master can fetch specific status information like actual position, error flags, etc. from each individual slave node.

Integrated sensorless step-loss detection prevents the positioner from losing steps and stops the motor when running into stall. This enables silent, yet accurate position calibrations and allows semi-closed loop operation when approaching the mechanical end-positions.

The chip is implemented in I2T100 technology, enabling both high voltage analog circuitry and digital functionality on the same chip. Stegia 2500TE stepper motor series is fully compatible with the automotive voltage requirements.

## Motor Driver

Micro-stepping technology
Sensorless stall detection
Peak current up to 800 mA (for driver)
Fixed frequency PWM current-control
Automatic selection of fast and slow decay mode 14V/24V compliant

## Protection

Over-current protection Under-voltage management
Open circuit detection
High-temp. warning and management Lowtemp flag

## Dynamic Torque Curves

## 25TE24B1500

| Conditions: | Bi-polar Constant Current Driver |
| :--- | :--- |
| Driver: | AMIS 30522 |
| Mode: | Full Step |



## Controller with RAM and OTP Memory

Position controller
Configurable speed, current and acceleration
Input to connect optional motion switch
$1^{2} C$ Interface
Bi-directional 2-wire bus for Inter IC Control
Field-programmable node addresses
Full diagnostics and status information

## EMI Compatibility

High voltage outputs with slope control HV outputs with slope control

## 25TE24B2300

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## Dynamic Torque Curves

## 25TE48B1500

Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step


## 25TE48B2300

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step
$\left.\begin{array}{l}\text { Pull in torque Pull out torque } \\ \text { Torque } \\ \text { (mN.m) } \\ 22 \\ 20 \\ 18\end{array}\right)$

## 25TE96B1500

Conditions: Bi-polar Constant Current Driver
Driver: AMIS 30522
Mode: Full Step

## 25TE96B2300

Conditions: Bi-polar Constant Current Driver Driver: AMIS 30522
Mode: Full Step


## Technical Pages

Primary units in this guide are metric (SI - the International System of units):

```
Length - m-(meter)
Mass - g-(gram)
Force - mN-(millinewton)
Torque - mN•m-(millinewton meter)
Inertia- g`m2-(gram meter2)
```

In this system, mass is always in kilograms or grams.
Force, or
weight, is always in newtons or milli newtons.

$$
F=m a
$$

when $a=9.81 \mathrm{~m} / \mathrm{sec} 2$ (acceleration due to gravity), then F would be the weight in newtons.

## How to measure Mass or Force

A spring scale reading of 1 kg means that you are measuring a mass of 1 kg .

A spring scale reading of 2.2 lbs also is measuring a mass of 1 kg .


If you use that same spring scale to measure a force, the 1 kg reading must be multiplied by 9.8 to give a force of 9.8 Newtons.


The reading of 2.2 lb is a force and is equal to 9.8 newtons.

If the same scale is used to measure torque ( $T=F R$ ) at a one meter radius, the reading of

$$
1 \text { kilogram x } 1 \text { meter }=1 \text { kgm }
$$

must be multiplied by 9.8 to give a torque of 9.8 newton meters

Watts out = torque output x speed in radians/sec

$$
1 \mathrm{watt} \quad=1 \mathrm{Nm} / \mathrm{sec}
$$

For a given output Torque ( mNm ) and converting $v$ (steps/sec) to radians/sec

If the speed is in RPM then:
Watts out $=1.05 \times 10-4 \times$ torque $(\mathrm{mN} \cdot \mathrm{m}) \times$ RPM
9. Steps/sec to RPM

## Motor watts output

$$
\begin{aligned}
& R P M=\frac{v(\text { steps } / \mathrm{s} \mathrm{~Hz}) \times 60}{\text { motor steps } / \mathrm{rev}} \\
& \text { Watts out }=\text { Torque }(\mathrm{mN} \times m) \times v \frac{\text { motor step angle }}{57.3} \times 10^{-3}
\end{aligned}
$$

1. Torque $(\mathrm{mN} \cdot \mathrm{m})=$ Force $(\mathrm{mN}) \times \operatorname{Radius}(\mathrm{m})$

Torque $=$ FR
2. Torque required to accelerate inertial load
$\mathrm{T}(\mathrm{mN} \cdot \mathrm{m})=\mathrm{J} \alpha$
$J=$ Inertia in $\mathrm{g} \bullet \mathrm{m} 2$
$\alpha=$ Acceleration in radians $/ \mathrm{sec} 2$

## EXAMPLE:

If a rotor inertia plus load inertia $=\mathrm{J}=2 \times 10-3 \mathrm{~g} \cdot \mathrm{~m} 2$, and the motor is to be accelerated at 6,000 radians per sec, what torque is required?
$T=J \alpha=2 \times 10-3 \times 6000$
$\mathrm{T}=12 \mathrm{mN} \cdot \mathrm{m}$
For stepper motors, a can be converted to radians $/ \mathrm{sec} 2$ from steps $/ \mathrm{sec} 2$.
a $($ radians $/ \mathrm{sec})=x$
TORQUE = J x
EXAMPLE:
For a 48-step per revolution motor accelerating from zero to
steps/sec running rate $v$ in $\Delta t$ seconds.
TORQUE $=\mathrm{J} \mathrm{x}$

|  | Units US |  | Units Metric SI |
| :--- | :--- | :--- | :--- |
| Length | 1 inch | 2.54 cm | $2.54 \times 10^{-2} \mathrm{~m}$ |
|  | 1 oz |  | 278 nM |
| Force | 1 lb | 4.45 N | 4450 mN |
|  | $1 \mathrm{~g} \cdot \mathrm{~m}$ |  | 9.8 mN |
|  | 1 lb |  | 454 g |
| Mass | 1 loz |  | 28.4 g |
|  | 1 kg |  | 1000 g |
|  | $1 \mathrm{~g} \cdot \mathrm{~cm} 2$ |  | $10^{-4} \mathrm{~g} \cdot \mathrm{~m} 2$ |
| Inertia | $1 \mathrm{oz-in}-\mathrm{sec} 2$ |  | $7.06 \mathrm{~g} \cdot \mathrm{~m} 2$ |
|  | $1 \mathrm{llug} \mathrm{ft2}$ |  | $0.29 \mathrm{~g} \cdot \mathrm{~m} 2$ |
|  | 1 oz -in |  | $7.06 \mathrm{mN} \cdot \mathrm{m}$ |
|  | $1 \mathrm{lb-ft}$ |  | $1.356 \mathrm{~N} \cdot \mathrm{~m}$ |
| Torque | $1 \mathrm{~g} \cdot \mathrm{~cm}$ |  | $9.8 \times 10^{-2} \mathrm{mN} \cdot \mathrm{m}$ |
|  |  | $10.2 \mathrm{~g} \cdot \mathrm{~cm}$ | $1 \mathrm{mN} \cdot \mathrm{m}$ |
|  |  | $141.6 \mathrm{oz}-\mathrm{in}$ | $1 \mathrm{~N} \cdot \mathrm{~m}$ |

## Conversion Table for Torque

|  | lb $\mathrm{ft}^{\text {f }}$ | lb - in | Oz $\cdot$ in | dyne.cm | $N \cdot m$ | $\mathbf{m N} \cdot \mathrm{m}$ | $\mathrm{kg} \cdot \mathrm{cm}$ | g. cm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lb $\mathbf{f t}^{\text {f }}$ | 1 | 12 | 192 | $1.356 \times 10^{7}$ | 1.356 | $\begin{gathered} 1.356 \mathrm{x} \\ 10^{3} \end{gathered}$ | 13.825 | $\begin{gathered} 13.825 x \\ 10^{4} \end{gathered}$ |
| $\mathbf{l b} \cdot \mathrm{in}$ | $\begin{gathered} 8.333 x \\ 10^{-2} \end{gathered}$ | 1 | 16 | $1.130 \times 106$ | 0.113 | $\frac{1.130 \mathrm{x}}{10^{2}}$ | 1.152 | $1.152 \times 10^{3}$ |
| oz $\cdot$ in | $\begin{gathered} 5.208 \mathrm{x} \\ 10^{-3} \end{gathered}$ | $\begin{aligned} & 6.250 \mathrm{x} \\ & 10^{-2} \end{aligned}$ | 1 | $7.062 \times 10^{4}$ | $\begin{gathered} 7.062 \mathrm{x} \\ 10^{-3} \end{gathered}$ | 7.062 | $\frac{7.201 x}{10^{-2}}$ | 72.01 |
| dyne $\cdot \mathrm{cm}$ | $\begin{gathered} 7.3761 \times \\ 10^{-8} \end{gathered}$ | $\underset{10^{-7}}{8.851} x$ | $\begin{gathered} 1.416 \mathrm{x} \\ 10^{-5} \end{gathered}$ | 1 | $10^{-7}$ | $10^{-4}$ | $\begin{gathered} 1.0197 x \\ 10^{6} \end{gathered}$ | $\begin{gathered} 1.0197 x \\ 10^{-3} \end{gathered}$ |
| $\mathrm{N} \cdot \mathrm{m}$ | 0.7376 | 8.851 | 141.8 | $10^{7}$ | 1 | 1000 | 10.197 | $\begin{gathered} 1.0197 x \\ 10^{4} \end{gathered}$ |
| $\mathrm{mN} \cdot \mathrm{m}$ | $\begin{aligned} & 7.376 x \\ & 10^{4} \end{aligned}$ | $\begin{gathered} 8.851 \mathrm{x} \\ 10^{-3} \end{gathered}$ | 0.1416 | $10^{4}$ | $10^{-3}$ | 1 | $\frac{1.0197 x}{10^{-2}}$ | 10.197 |
| $\mathrm{kg} \cdot \mathrm{cm}$ | $\begin{aligned} & 7.233 x \\ & 10^{-2} \end{aligned}$ | 0.8679 | 13.877 | $9.8066 \times 10^{5}$ | $\begin{gathered} 9.8066 x \\ 10^{-2} \end{gathered}$ | 98.066 | 1 | 1000 |
| $\mathrm{g} \cdot \mathrm{cm}$ | $\begin{gathered} 7.233 \mathrm{x} \\ 10^{-5} \\ \hline \end{gathered}$ | $\begin{gathered} 8.680 \mathrm{x} \\ 10^{-4} \\ \hline \end{gathered}$ | $\begin{gathered} 1.389 \mathrm{x} \\ 10^{-2} \\ \hline \end{gathered}$ | 980.67 | $\begin{gathered} 9.8066 x \\ 10^{-5} \\ \hline \end{gathered}$ | $\begin{gathered} 9.8066 x \\ 10^{-2} \\ \hline \end{gathered}$ | $10^{-3}$ | 1 |

## Conversion Table for Moment of Inertia

|  | lb. $\mathbf{f t}^{\mathbf{2}}$ | lb. ft - $\mathbf{s}^{\mathbf{2}}$ | lb. in ${ }^{2}$ | $\begin{gathered} \text { Ib. } \\ \text { in. } \mathrm{s}^{2} \end{gathered}$ | Oz- in ${ }^{2}$ | $\begin{aligned} & \text { oz. } \\ & \text { in. } \mathrm{s}^{2} \end{aligned}$ | $\mathrm{kg} \cdot \mathrm{cm}^{2}$ | $\mathrm{kg} \cdot \mathrm{cm} \cdot \mathrm{s}^{2}$ | g. $\mathrm{cm}^{2}$ | $\mathrm{g} \cdot \mathrm{~cm}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| lb. $\mathbf{f t}^{\mathbf{2}}$ | 1 | $\begin{aligned} & 3.108 \mathrm{x} \\ & 10^{-2} \end{aligned}$ | 144 | . 373 | $\begin{gathered} 2.304 x \\ 10^{3} \end{gathered}$ | 5.968 | 421.40 | 0.4297 | $\begin{aligned} & 4.214 x \\ & 10^{5} \end{aligned}$ | 429.71 |
| $\mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{\mathbf{2}}$ | 32.174 | 1 | $\begin{gathered} 4.633 x \\ 10^{3} \end{gathered}$ | 12 | $\begin{aligned} & 7.413 x \\ & 10^{4} \end{aligned}$ | 192 | $\begin{aligned} & 1.356 x \\ & 10^{4} \end{aligned}$ | 13.825 | $\begin{aligned} & 1.356 \mathrm{x} \\ & 10^{7} \end{aligned}$ | $\begin{aligned} & 1.383 \\ & \times \quad 10^{4} \end{aligned}$ |
| lb. $\mathrm{in}^{2}$ | $\begin{aligned} & 6.944 \mathrm{x} \\ & 10^{-3} \end{aligned}$ | $\begin{gathered} 2.158 \mathrm{x} \\ 10^{-4} \end{gathered}$ | 1 | $\begin{array}{r} 2.590 \\ \times 10^{-3} \end{array}$ | 16 | $\begin{aligned} & 4.144 \\ & \times 10^{-2} \end{aligned}$ | 2.926 | $\begin{gathered} 2.984 \mathrm{x} \\ 10^{-3} \end{gathered}$ | $\begin{gathered} 2.926 \mathrm{x} \\ 10^{3} \end{gathered}$ | 2.984 |
| lb. in. $\mathbf{s}^{\mathbf{2}}$ | 2.681 | $\begin{aligned} & 8.333 \mathrm{x} \\ & 10^{-2} \end{aligned}$ | 386.1 | 1 | 32.174 | 16 | $\begin{aligned} & 1.130 \mathrm{x} \\ & 10^{3} \end{aligned}$ | 1.152 | $\begin{gathered} 1.130 x \\ 10^{6} \end{gathered}$ | $\begin{array}{r} 1.152 \\ \times 10^{3} \end{array}$ |
| Oz. $\mathrm{in}^{2}$ | $\frac{4.340 \mathrm{x}}{10^{-4}}$ | $\begin{aligned} & 1.349 \mathrm{x} \\ & 10^{-5} \end{aligned}$ | $\begin{aligned} & 6.250 \mathrm{x} \\ & 10^{-2} \end{aligned}$ | $\begin{gathered} 1.619 \\ \times 10^{-4} \end{gathered}$ | 1 | $\begin{gathered} 2.59 \mathrm{x} \\ 10^{-3} \end{gathered}$ | 0.183 | $\begin{aligned} & 1.865 \mathrm{x} \\ & 10^{-4} \end{aligned}$ | 182.901 | 0.186 |
| OZ. in. $\mathrm{s}^{2}$ | 0.168 | $\begin{gathered} 5.208 \mathrm{x} \\ 10^{-3} \end{gathered}$ | 24.13 | $\begin{aligned} & 6.250 \\ & \times 10^{-2} \end{aligned}$ | 386.088 | 1 | 70.616 | $\frac{7.201}{10^{-2}} \mathrm{x}$ | $\begin{aligned} & 7.201 x \\ & 10^{4} \end{aligned}$ | 72.008 |
| $\mathrm{kg} \cdot \mathrm{cm}^{2}$ | $\begin{aligned} & 2.373 x \\ & 10^{-3} \end{aligned}$ | $\begin{gathered} 7.376 \mathrm{x} \\ 10^{-5} \end{gathered}$ | 0.3417 | $\begin{aligned} & 8.851 \\ & \times 10^{-4} \end{aligned}$ | 5.467 | $\begin{array}{r} 1.416 \\ \times 10^{-2} \end{array}$ | 1 | $\frac{1.0197 x}{10^{-3}}$ | 1000 | 1.0197 |
| $\mathrm{kg} \cdot \mathrm{cm} \cdot \mathrm{s}^{2}$ | 2.327 | $\begin{aligned} & 7.233 \mathrm{x} \\ & 10^{-2} \end{aligned}$ | 335.109 | 0.8679 | $\begin{aligned} & 5.362 \mathrm{x} \\ & 10^{3} \end{aligned}$ | 13.887 | 980.665 | 1 | $\begin{aligned} & 9.807 x \\ & 10^{5} \end{aligned}$ | 1000 |
| g. $\mathrm{cm}^{2}$ | $\frac{2.373 \mathrm{x}}{10^{-6}}$ | $\begin{gathered} 7.376 \mathrm{x} \\ 10^{-8} \end{gathered}$ | $\frac{3.417 x}{10^{-4}}$ | $\begin{aligned} & 8.851 \\ & \times 10^{-7} \end{aligned}$ | $\begin{gathered} 5.467 \mathrm{x} \\ 10^{-3} \end{gathered}$ | $\begin{array}{r} 1.416 \\ \times 10^{-5} \end{array}$ | $10^{-3}$ | $\frac{1.0197 x}{10^{-6}}$ | 1 | $\begin{array}{r} 1.0197 \\ \times 10^{-3} \\ \hline \end{array}$ |
| $\mathrm{g} \cdot \mathrm{cm} \cdot \mathrm{s}^{2}$ | $\begin{gathered} 2.327 \mathrm{x} \\ 10^{-3} \\ \hline \end{gathered}$ | $\begin{gathered} 7.233 \mathrm{x} \\ 10^{-5} \\ \hline \end{gathered}$ | 0.3351 | $\begin{array}{r} 8.680 \\ \times 10^{-4} \\ \hline \end{array}$ | 5.362 | $\begin{array}{r} 1.389 \\ \times 10^{-2} \\ \hline \end{array}$ | . 9807 | $10^{-3}$ | 980.667 | 1 |

## Request Form - Stepper Motors

| Customer Info |  |
| :--- | :--- |
| Name: | Company name: |
| Department/Division : | Adress: |
| Phone/Fax number : |  |
| Website adress www : | Country : |

## Requirements PM STEPPERS

| Application: |  |  |  |
| :---: | :---: | :---: | :---: |
| Motor diameter : mm | Motor height : mm | Shaft diameter : mm | Stepangle : |
| Type of bearings: Sleeve bearings Ballbearings | Wire type: AWG | Constant Current : mA/phase | Motor Voltage: V |
| Driving method: <br> Bipolar <br> Unipolar |  | Winding resistance $\Omega$ | Inductance: mH |
| Holding Torque : mNm |  | Driver mode : Full step Half step Micro step <br> number of microsteps |  |
| Pull in Torque: mNm | @ Hz |  |  |
| Pull out Torque : mNm | @ Hz | Production start: | Qty |

## Request Form - Synchronous Mołors

| Customer Info |  |
| :--- | :--- |
| Name : | Company name : |
| Department/Division : | Adress : |
| Phone/Fax number : |  |
| Website adress www : | Country : |

Requirements SYNCHRONUS

| Application: |  |  |  |
| :---: | :---: | :---: | :---: |
| Motor diameter : | Motor height : | Shaft diameter : |  |
| Connector type : | Wire type: AWG | Voltage: 24 Vac 110 Vac | 48 Vac 230 Vac |
| Speed RPM @ 50Hz |  | Speed RPM @ 60Hz |  |
| 125 rpm <br> ○ 500 rpm | 250 rpm <br> O other rpm | 150 rpm <br> ○ 600 rpm | 300 rpm <br> O other rpm |
| Running Torque: |  | Other requirements: |  |



Innovative drive technology since 1993

